Protein kinase C isoforms are translocated to microtubules in neurons.
نویسندگان
چکیده
Activation of protein kinase C (PKC) increases microtubule (MT) growth lifetimes, resulting in extension of a nocodazole-sensitive population of MTs in Aplysia growth cones. We examined whether the two phorbol ester-activated PKCs in Aplysia, the Ca(2+)-activated PKC Apl I and the Ca(2+)-independent PKC Apl II, are associated with these MTs. Phorbol esters translocated PKC to the Triton X-100-insoluble fraction, and a significant portion of this translocated pool was sensitive to low concentrations of nocodazole. Low doses of nocodazole had no effect on the amount of PKC in the Triton X-100-insoluble fraction in the absence of phorbol esters, whereas higher doses of nocodazole reduced basal levels of PKC Apl II. The F-actin cytoskeletal disrupter, latrunculin A, removed both PKCs from the Triton X-100-insoluble fraction in both control and phorbol ester-treated nervous systems. PKC Apl II also directly interacted with purified MTs. In detergent-extracted cells, both PKCs immunolocalized predominantly with MTs. PKCs were associated with newly formed MTs invading the actin-rich peripheral growth cone domain after PKC activation. Our results are consistent with a central role for PKCs in regulating MT extension.
منابع مشابه
The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملCloning and characterization of Ca(2+)-dependent and Ca(2+)-independent PKCs expressed in Aplysia sensory cells.
We isolated cDNA clones from an Aplysia sensory-cell library encoding two isoforms of protein kinase C (PKC). Several isozyme-specific regions are conserved in the Aplysia kinases, notably the variable regions V5 in the Ca(2+)-dependent PKC (Apl I) and V1 in the Ca(2+)-independent PKC (Apl II). Neuronal proteins with the properties expected of these two isoforms can be identified with antibodie...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملInfluence of taxol and CNTs on the stability analysis of protein microtubules
Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 43 شماره
صفحات -
تاریخ انتشار 2002